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Abstract
Background  Neonatal respiratory distress syndrome (NRDS) is a prevalent cause of respiratory failure and death 
among newborns, and prompt diagnosis is imperative. Historically, diagnosis of NRDS relied mostly on typical clinical 
manifestations, chest X-rays, and CT scans. However, recently, ultrasound has emerged as a valuable and preferred 
tool for aiding NRDS diagnosis. Nevertheless, evaluating lung ultrasound imagery necessitates rigorous training and 
may be subject to operator-dependent bias, limiting its widespread use. As a result, it is essential to investigate a new, 
reliable, and operator-independent diagnostic approach that does not require subjective factors or operator expertise. 
This article aims to explore the diagnostic potential of ultrasound-based radiomics in differentiating NRDS from other 
non-NRDS lung disease.

Methods  A total of 150 neonatal lung disease cases were consecutively collected from the department of neonatal 
intensive care unit of the Quanzhou Maternity and Children’s Hospital, Fujian Province, from September 2021 
to October 2022. Of these patients, 60 were diagnosed with NRDS, whereas 30 were diagnosed with neonatal 
pneumonia, meconium aspiration syndrome (MAS), and transient tachypnea (TTN). Two ultrasound images with 
characteristic manifestations of each lung disease were acquired and divided into training (n = 120) and validation 
cohorts (n = 30) based on the examination date using an 8:2 ratio. The imaging texture features were extracted 
using PyRadiomics and, after the screening, machine learning models such as random forest (RF), logistic regression 
(LR), K-nearest neighbors (KNN), support vector machine (SVM), and multilayer perceptron (MLP) were developed 
to construct an imaging-based diagnostic model. The diagnostic efficacy of each model was analyzed. Lastly, we 
randomly selected 282 lung ultrasound images and evaluated the diagnostic efficacy disparities between the optimal 
model and doctors across differing levels of expertise.

Results  Twenty-two imaging-based features with the highest weights were selected to construct a predictive model 
for neonatal respiratory distress syndrome. All models exhibited favorable diagnostic performances. Analysis of the 
Youden index demonstrated that the RF model had the highest score in both the training (0.99) and validation (0.90) 
cohorts. Additionally, the calibration curve indicated that the RF model had the best calibration (P = 0.98). When 
compared to the diagnostic performance of experienced and junior physicians, the RF model had an area under the 
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Background
Neonatal respiratory distress syndrome (NRDS) is a 
condition in which newborns experience respiratory 
distress shortly after birth, primarily due to progressive 
alveolar atrophy caused by a deficiency in alveolar sur-
face type II active substances [1]. Traditionally, the diag-
nosis of NRDS is based on clinical manifestations and 
radiographic examinations [2]. Previously, the diagnosis 
of lung disease was considered inappropriate for ultra-
sonography [3, 4]. Recent studies have shown that lung 
ultrasound has good diagnostic sensitivity and specificity 
for various lung diseases in neonates and children [5–7]. 
However, an accurate ultrasound diagnosis of pulmo-
nary diseases requires systematic operator training for 
operation and diagnosis. Moreover, this often relies on 
the subjective judgment of the operator, which may delay 
the diagnosis and treatment of the child if the judgment 
is incorrect. Therefore, finding and establishing a more 
objective and reliable diagnostic method for NRDS is 
important for clinical ultrasonography.

Radiomics is a novel and non-invasive technique that 
can extract massive amounts of feature data from images 
that are difficult to discern using human vision. It can 
achieve a quantitative representation of image features 
such as grayscale, texture, and morphology [8]. Machine 
learning algorithms can be utilized to analyze data accu-
rately, establish predictive models, reduce subjective 
judgments, and provide objective quantitative predictive 
data to assist physicians’ decisions [9, 10]. By analyzing 
lung ultrasound images of patients with coronavirus dis-
ease (COVID-19), some scholars [11] found that the sup-
port vector machine (SVM) model demonstrated better 
accuracy in assessing the severity of pleural line changes, 
which is significant for accurately assessing patients’ dis-
eases. A recent study [12] shows that integrating seven 
machine learning models selected for the prediction of 
preoperative 2-deoxy-2-[fluorine-18]fluoro-D-glucose 
([18  F] FDG) positron emission tomography/computed 
tomography (PET/CT) radiographic features to predict 
the pathological aggressiveness of lung cancer had the 
highest diagnostic efficacy and better stability. These 
studies demonstrated the application of histological 
imaging in lung diseases.

Ultrasound imaging is not commonly used to diagnose 
pulmonary diseases. This study aimed to investigate the 
diagnostic efficacy of ultrasound-assisted diagnosis of 
NRDS.

Methods
Patients and data collection
A total of 150 inpatients who underwent lung ultrasound 
examination at the neonatal intensive care unit of Quan-
zhou Maternity and Children’s Hospital between Septem-
ber 2021 and November 2022 were included in this study. 
The patients were divided into training (n = 120) and 
verification cohorts (n = 30) based on the time of admis-
sion in an 8:2 ratio. The diagnostic criteria for NRDS 
were based on the European Consensus Guidelines on 
the Management of Respiratory Distress Syndrome:2022 
Update. These criteria include (1) clinical manifesta-
tions such as shallow breathing, dyspnea, and expiratory 
moans appearing immediately after birth or within 4–6 h, 
which gradually worsen with time, along with blue and 
gray complexion, three concave signs, nasal flapping, and 
progressive cyanosis that does not improve with oxygen. 
Additionally, the pulmonary breath sounds and audible 
crackles decreased at the end of deep inspiration; (2) 
blood gas analysis indicated hypoxemia, increased blood 
carbon dioxide, metabolic acidosis, and respiratory aci-
dosis; (3) chest X-ray findings showed a diffuse decrease 
in the transmittance of both lungs, ground-glass opacities 
in mild cases of both lung fields, the bronchial inflated 
phase as the disease progressed, and white lung forma-
tion in severe cases.

The exclusion criteria for this study were as follows: 
(1) Congenital developmental abnormalities such as 
congenital pulmonary dysplasia, thoracic malformation, 
posterior nasal atresia, congenital diaphragmatic hernia, 
and severe congenital heart disease; (2) Restrictive lung 
ventilation diseases, including severe pneumothorax and 
severe abdominal distention; (3) Prophylactic use of alve-
olar surfactant after birth; (4) Diagnosis of pulmonary 
cyst adenomatous malformations during both fetal and 
postpartum periods. The procedures for incorporating 
and excluding study participants are depicted in Fig. 1.

curve (AUC) of 0.99; however, the values for experienced and junior physicians were 0.98 and 0.85, respectively. The 
difference in diagnostic efficacy between the RF model and experienced physicians was not statistically significant 
(P = 0.24), whereas that between the RF model and junior physicians was statistically significant (P < 0.0001).

Conclusion  The RF model exhibited excellent diagnostic performance in the analysis of texture features based on 
ultrasound radiomics for diagnosing NRDS.

Keywords  Radiomics, Machine learning, Neonatal respiratory distress syndrome, Ultrasound diagnosis, Predictive 
model
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Ultrasound image acquisition
A GE LOGIQ P6 color Doppler ultrasound was utilized 
in this study, and a line array probe with a frequency 
of 9–12  MHz was selected. Only one focal point was 
selected and aligned with the pleural line. The harmonics 
were turned off, and the sweep depth was set to 3–4 cm. 
Two doctors with extensive experience in lung ultra-
sound diagnosis adjusted and optimized the image qual-
ity to capture the optimal images. Two ultrasound images 
of each patient were obtained and saved in digital imag-
ing and communications in medicine (DICOM) format.

Lesion segmentation and radiomic feature extraction
The workflow for imaging histology involves several 
steps, including regions of interest (ROI) cutting, feature 
selection, feature extraction, and model construction. All 
ultrasound images meeting the inclusion criteria were 
obtained using an ultrasound instrument. Two senior 
physicians specializing in neonatal lung ultrasound man-
ually outlined the ROI of the lesion area using ITK-SNAP 
3.8.0 software (http://www.itksnap.org). In cases where 
images with combined pleural effusion were encoun-
tered, pleural effusion was excluded to avoid any poten-
tial interference.

Fig. 1  The flowchart outlining the inclusion and exclusion criteria for study subjects. NRDS = neonatal respiratory distress syndrome, MAS = meconium 
aspiration syndrome, TTN = transient tachypnea of the newborn
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Feature selection and radiomics model construction
The PyRadiomics module of Python software was used 
to extract the imaging histology features of ROI. A total 
of 107 initial imaging histology features were extracted, 
and after applying a significance threshold of P < 0.05, 83 
features were retained for further analysis. Any two fea-
tures with a correlation coefficient greater than 0.9 were 
identified using Spearman rank correlation coefficient 
calculation and reduced to a single feature to eliminate 
redundant features with high repeatability. Furthermore, 
a greedy recursive strategy was employed to filter irrel-
evant features, and the remaining features were used to 
construct a dataset for the least absolute shrinkage and 
selection operator (LASSO) regression model. Ten-fold 
cross-validation was performed to obtain the optimal 
λ, and the features with none zero were retained for the 
prediction model construction (Fig. 2).

Statistical analysis
All statistical analyses were performed using the 
SPSS software (version 26.0). For normally distrib-
uted measures, descriptive statistics are presented as 
mean ± standard deviation (±S). A t-test was used for 
two independent sample groups. Non-normally distrib-
uted measures were described using the median and 
interquartile range, represented as M (P25, P75), and 
the Mann-Whitney U test was used to compare the dif-
ferences between the groups. Count data were presented 
as cases and composition ratios (%), and differences 
between groups were assessed using the chi-square, con-
tinuous corrected chi-square, or Fisher’s exact test. The 
variability of the performance data obtained from the 
internal validation of each model was analyzed using the 
McNemar test. Calibration curves were constructed for 
each model to assess the degree of calibration. Statistical 
significance was set at p < 0.05.

Fig. 2  The workflow of the radiomics model construction. In the segmentation section, we delineated the regions of interest (ROI) for lung ultrasound 
in patients with neonatal respiratory distress syndrome (NRDS), neonatal pneumonia, meconium aspiration syndrome (MAS), and transient tachypnea 
of the newborn (TTN), respectively. In the feature extraction part, we presented the results of feature extraction and the distribution proportions. In the 
feature selection section, we showcased the p-value distribution of the extracted features, cluster analysis, the coefficient convergence of the least ab-
solute shrinkage and selection operator (LASSO) regression applied to the features, and the results of ten-fold cross-validation to obtain the optimal λ. In 
the model construction section, we displayed the features with none zero obtained after feature selection, ROC curves for the training and validation sets, 
and the decision curve analysis (DCA) for different models
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Results
Clinical characteristics of patients
The fundamental clinical characteristics of the children 
in the training and validation cohorts are comparable, as 
shown in Table 1.

Feature extraction and selection for ultrasound images
A total of 107 initial image histology features were 
extracted. Following feature screening by the LASSO 
algorithm, 22 features with none zero were ultimately 
incorporated into building the prediction model (Fig. 3).

Comparison of diagnostic effectiveness of different models
The 22 features with none zero were included in five 
models: random forest (RF), support vector machine 
(SVM), multilayer perceptron (MLP), k-nearest neighbor 
(KNN), and logistic regression (LR). The results dem-
onstrated that all models had high diagnostic efficacy, 
and no statistically significant differences were observed 
between the pair-wise comparisons of sensitivity, speci-
ficity, positive predictive value, or negative predictive 
value among the models (P > 0.05). In the training cohort, 
the RF and SVM models showed higher Youden indices, 
whereas the KNN and LR models showed lower Youden 
indices (Table  2). In the validation cohort, the RF and 
SVM models showed higher Youden indices; however, 
the KNN and MLP models showed lower values. The 
study found that the RF model exhibited the highest 
diagnostic efficacy (Table 3).

Calibration curve comparison
The Hosmer–Lemeshow test showed that the KNN 
model was poorly calibrated (p = 0.004, p < 0.05), whereas 

Table 1  Baseline characteristics of patients in the training and 
test cohorts
Characteristics Training 

cohort(n = 120, 
%)

Test 
cohort(n = 30, 
%)

χ2 /Z P

Age, day 
[M(P25, P75)]

263(216, 277) 264(228, 277) -0.634 0.526

Weight, g 
[M(P25, P75)]

2860(1500, 3565) 2925(1950, 
3413)

-0.115 0.908

Male 86(71.7) 19(63.3) 0.794 0.373
Eutocia 62(51.6) 16(53.3) 0.027 0.870
History of
intrauterine 
distress

16(13.3) 0(0) 3.188 0.870

History of 
asphyxia

30(25) 5(16.7) 0.932 0.074

Gestational dia-
betes mellitus

27(22.5) 7(23.3) 0.010 0.334

Pregnancy-
induced 
hypertension

5(4) 1(3) 0.010 0.922

History of 
glucocorticoid 
use

35(29.2) 7(23.3) 0.405 0.755

Fig. 3  The histogram of the coefficients of the selected features. 22 features that coefficient value was none zero remained, signature was built according 
to the coefficient value of the selected features
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the RF (p = 0.982), MLP (p = 0.599), SVM (p = 0.462), and 
LR (p = 0.340) models were better calibrated (Fig. 4).

Comparison of decision curves for different models
In most cases, diverse models have demonstrated the 
potential to offer a notable rate of clinical benefit (Fig. 5).

The diagnostic accuracy of randomly selected lung 
ultrasound images varies across doctors of differing levels 
of expertise
The diagnostic efficacy of the RF model and that of the 
senior physicians (over 5 years of dedicated experience 
in neonatal lung ultrasound) did not differ significantly 
regarding AUC, sensitivity, specificity, positive predic-
tive value, or negative predictive value, and both were 

Table 2  Comparison of the diagnostic performance of different models in the training cohort
Model Sen Spe Accuracy PPV NPV AUC Youden index
RF 98.96% 100% 99.58% 100% 99.31% 0.995 0.9896
SVM 93.75% 97.92% 96.25% 96.77% 95.92% 0.958 0.9167
MLP 86.46% 95.83% 92.08% 93.26% 97.87% 0.911 0.8229
KNN 85.42% 91.67% 89.17% 87.23% 90.41% 0.885 0.7709
LR 84.40% 92.36% 89.17% 88.04% 89.86% 0.884 0.7676

Table 3  Comparison of the diagnostic performance of different models in the validation cohort
Model Sen Spe Accuracy PPV NPV AUC Youden index
RF 95.83% 94.44% 95.00% 92.00% 97.14% 0.951 0.9027
SVM 95.83% 91.67% 93.33% 88.46% 97.06% 0.938 0.8750
LR 87.50% 94.44% 91.67% 91.30% 91.89% 0.910 0.8194
KNN 91.67% 88.89% 90.00% 84.62% 94.12% 0.903 0.8056
MLP 79.17% 88.89% 85.00% 82.61% 86.48% 0.840 0.6806

Fig. 4  Calibration curves of different models. a∼ e: RF、MLP、SVM、LR、KNN model, respectively. The x-axis represents the mean predicted prob-
ability, and the y-axis represents the proportion of true positives. The diagonal dashed line represents the reference line of perfect calibration. A model 
with good calibration will have its calibration curve closer to the reference line. A Hosmer-Lemeshow test with a p-value > 0.05 indicates good model fit
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significantly better than those of junior physicians (3 ∼  5 
years of involvement in neonatal lung ultrasound work) 
(Table 4). Moreover, physicians at different levels exhib-
ited discrepancies in their subjective diagnoses, with 
mild NRDS and transient respiratory tachypnea in neo-
nates being frequently misdiagnosed.

Discussion
Radiomics, a branch of artificial intelligence, has recently 
gained increasing attention in clinical medicine because 
of its ability to extract significant feature data from 
ultrasound images, representing quantitative informa-
tion on image features, such as grayscale, texture, and 
morphology. The integration of machine learning algo-
rithms allows for objective analysis of this data, mini-
mizing subjective judgments and providing physicians 
with quantitative data to inform their decision-making 
[9, 13, 14]. Although research on machine learning for 
lung ultrasound is scarce, both domestically and inter-
nationally, scholars such as Cristiana Baloescu et al. [15] 
have successfully used convolutional neural networks to 
develop automated detection models for lung ultrasound 

B-lines, which were effective in assessing the severity of 
the alveolar interstitial syndrome. Another recent study 
[16] established a deep learning model to distinguish 
seven pivotal lung ultrasound features in neonates, dem-
onstrating a commendable average accuracy. However, 
this model cannot distinguish NRDS from other lung 
diseases. Notably, limited research exists on imaging his-
tology for identifying NRDS and other neonatal lung dis-
eases using lung ultrasound.

In this study, lung ultrasound images of 60 children 
with NRDS and 90 children with other lung diseases 
were analyzed using ultrasound imaging histology. The 
results indicated that the models performed well in the 
training and validation cohorts. Specifically, in the train-
ing cohort, no statistically significant differences were 
observed in sensitivity, specificity, positive predictive 
value, or negative predictive value between the mod-
els. However, in the validation cohort, the Jordans were 
higher for the RF and SVM models and lower for the 
KNN and MLP models; the KNN model was poorly cali-
brated, whereas the other models were well calibrated, 
with the RF model being the best and the MLP and SVM 

Table 4  Comparison of diagnostic efficacy between different levels of doctors and RF model
Group Sen Spe Accuracy PPV NPV AUC Youden index
Senior doctor 99.11%a 98.82%a 98.94% 98.23%a 99.41%a 0.990 0.9793
RF 98.21%a 97.65%a 97.87% 96.49%a 98.81%a 0.979 0.9586
Junior doctor 81.25% 89.41% 86.17% 83.49% 87.86% 0.853 0.7066
a: aP<0.05 compared with junior doctors

Fig. 5  Decision curves of different models. a∼ e: RF、SVM、LR、KNN、MLP model, respectively. The horizontal axis represents the threshold prob-
ability, while the vertical axis represents the net benefit rate. The larger the red shaded area, the wider the threshold range, and the greater the clinical 
value of the model
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models being the second best. When comparing the 
diagnostic efficacy of randomly selected lung ultrasound 
images between different levels of physicians, the RF 
model showed comparable diagnostic efficacy to senior 
physicians, with no statistically significant differences in 
sensitivity, specificity, positive predictive value, or nega-
tive predictive value. However, statistically significant dif-
ferences were observed with junior physicians, and the 
Youden index was slightly lower than that of senior phy-
sicians and significantly higher than that of junior physi-
cians. These results suggest that the RF model has better 
clinical application value. Furthermore, the RF model 
demonstrated stable and high application ability and 
proved to be the optimal model in the study of imaging-
based histology-assisted diagnosis of NRDS.

Noteworthy, the RF model exhibits high accuracy and 
strong model generalization ability owing to the inte-
grated algorithm that incorporates decision-tree-based 
stochastic attributes. The RF model demonstrated wide-
spread applicability in various scenarios. For instance, 
Ren et al. [17] showed that the screening and predic-
tive modeling of endometriosis-causing genes based on 
the RF model exhibited good clinical ability. Moreover, 
studies by Kwak et al. [18] and C. Venkata Narasimhulu 
[19] showed that the diagnostic efficacy of RF models is 
superior to that of experienced sonographers in diagnos-
ing benign and malignant thyroid nodules and classifying 
benign and malignant renal cancers after noise reduction 
processing of the images. These studies indicate that the 
RF model is a useful tool for clinical practice and medi-
cal image classification, which is consistent with the RF 
model selected in this study for differentiating NRDS 
from non-NRDS lung ultrasound diseases.

This study had several limitations. First, this study used 
only one instrument model for image collection, and fur-
ther exploration is required to determine whether the 
findings can be consistently reproduced using different 
instrument models. Second, this study was limited to a 
single-center setting; multicenter studies are needed to 
verify whether the diagnostic efficacy of the RF model 
is consistent across different settings. Finally, the sample 
size of this study was small, and obtaining a larger sample 
size for analysis would help verify the fundamental clini-
cal characteristics of the children [20] and the stability of 
the model. These limitations highlight the need for fur-
ther research to address these issues and improve the 
robustness of our findings.

Conclusions
In conclusion, the results of this study indicate that imag-
ing histology analysis based on lung ultrasound images 
using the RF model resulted in superior diagnostic effi-
cacy compared to other models, as demonstrated by its 
consistently high performance in both the training and 

validation cohorts, as well as in the evaluation of calibra-
tion curves. These findings suggest that the RF model is a 
promising approach for diagnosing neonatal respiratory 
distress syndrome based on lung ultrasound.
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